ピクシブ百科事典は2024年5月28日付でプライバシーポリシーを改定しました。改訂履歴
編集者:DFGNEXT
編集内容:少し追記。

パラドクスとは、ある特定の物事を考える時に生じる問題の一種。パラドックスと呼ばれることが多いが、本百科辞典においては同名のキャラクターの記事として既に書かれている為、この記事において記述する。

もしかして:パラドックス(『遊戯王5D's』 )、双子座のパラドクス聖闘士星矢Ω)、仮面ライダーパラドクス仮面ライダーエグゼイド

概要

一見妥当に見える理論なのに、結果として受け入れがたい結論が生まれ、それを問題だと判断した際にその理論を指して呼ぶ言葉。

  • 言葉として聴くとおかしいのに理論上は正しくなってしまう
  • どのように解釈しても矛盾が生じてしまう
  • 矛盾は生じないが直感と実際の答えが大きく異なる

など様々なものがパラドックスとして扱われている

もともとは数学や哲学の世界で使われていた言葉だったが、なんにでも応用できる考え方のため、様々な分野で使用されるようになった。

現在では、「矛盾」「ジレンマ」「意図に反した結果」、「理論と現実のギャップ」を表す言葉にもなっている。

パラドクスのパラ、とは反対の、という意味を持つものであり、しいて対義語をあげるならオーソドクス(オーソは正しい等の意味を持つ)となる。

主なパラドクス

タイムパラドックス(親殺しのパラドックス)

過去に遡って自分を産む前の親を殺した場合、自分は生まれてはこない。すると親は殺されなかったことになり、自分が生まれてくるという矛盾である。実際にはタイムトラベルそのものが現段階では不明であるがSFなど、タイムトラベルを取り扱った作品ではこのパラドックスが登場することもある。作品によっては親は殺せない(即ちどうやっても親を殺せないから自分が存在する)もの、親を殺したとしても自分は死なない(時間軸が別のものになる)もの等が存在する。

誕生日のパラドックス

何人の人を集めれば、同じ誕生日の人が二人いる確率が50%になるだろうか。論理的矛盾ではなく、直観的な答えと全く違うという意味のパラドックスであり多くの人は直感で100人以上と答えるのではないかと思われる。実際に確率を計算してみると「同じ誕生日の組合せが1組でもある」という事象の余事象は「同じ誕生日の組合せが1組でもない」であるためX人居る時に全員の誕生日が違う確率を求める。2人目が1人目と誕生日が異なる確率は364/365である。3人目が1,2人目と誕生日が異なる確率は363/365である。X人目の誕生日が1,2,...X-1人目の誕生日と異なる確率は(366-X)/365であるためそれらを全て掛け合わせたものを1から引いた数が「同じ誕生日の組合せが1組でもある確率」となる。これが50%を超えるのは23人の時であるから実際には23人居れば同じ誕生日の人が二人いる確率は50%を超えることになる。

クレタ人のパラドックス(嘘つきのパラドックス)

クレタ人が「クレタ人はみんな嘘つきだ」と言った時このクレタ人の発言は真か偽か、というものであり自己言及のパラドクスと呼ばれる。これは日常生活でもよく例を見付けることが出来、例えば「張り紙禁止」と書いてある張り紙等がそれにあたる。これらのパラドクスはメタ言語などにより解決を見出すことが出来る。

全能のパラドックス

何でもできる存在は、自分にも持ち上げられない石を作ることができるのか。というもので上の自己言及のパラドクスに似ている。もし自分が持ち上げられない石を作ったとすればその石は持ち上げられない、故に万能では無くなる、というものである。以下のワニのパラドックスもこれと同じようなものである。

ワニのパラドックス

ワニが一人の人間に「自分が今から何をするか当てたらお前を食わないが、外したら食う」と言った場合、ここで「お前はこれから私を食う」と答えたとする。こうするとワニが人間を食べた場合人間の言ったことは正しい事になる。即ちワニは人間を食べられない。しかしワニが人間を食べなければ人間の言ったことは誤りとなりワニは人間を食べなければならない、という上の全能のパラドックス同様にどちらを行うにせよ矛盾が発生するパターン。

無限ホテルのパラドックス

客室が無限にあるホテルには「満室=もう入らない」の規則があてはまらない。論理的には正しいが、直観的には違うパラドックス。具体的に言えば客室が無限にあるホテルがあり、今無限の客が宿泊している。しかしながらここに1人の宿泊希望客が現れた。支配人はアナウンスを行い全ての客を現在の部屋の番号の1つ上の番号の部屋に移動させた。これにより1番の部屋が空くため宿泊希望客は無事宿泊が出来た。次に無限の人数の宿泊希望客が現れた。すると支配人はアナウンスで全ての客を現在の部屋の番号の2倍の番号の部屋に移動させた。これにより奇数番の部屋が空くため無限の宿泊希望客は全て部屋に入れた、というもの。

シュレディンガーの猫

箱の中に猫がいる。生きているか死んでいるかは開けるまでわからない。箱を開けるまで、猫は生きていると同時に死んでいる。

ヘンペルのカラス

世界中の黒くないものを調べて「カラスではない」と証明すれば一羽もカラスを調べることなく「カラス=黒」を証明できる、という理論。これは対偶を利用した論理である。対偶とは本来の命題が「1+1=2である」だった場合に「2でなければ1+1でない」となるものである。対偶と元の命題の真偽は一致するため「カラスは黒色である」という対偶である「黒色で無ければカラスではない」が成り立つことになる。その為、あらゆる黒くないものがカラスでないことを示せば確かにカラスは黒色である事をカラスを見ずに証明できる。しかしながら当然黒いものは有限とはいえ限りなく多い為、調べ尽くすのはまず不可能である。

テセウスの船

すべての部品を交換した船は建造当初と同じと言えるのか、古い部品で組み立てたもう一つの船とではどちらが「本物」か、という問い。

スワンプマン

「テセウスの船」と同一のパラドックス。雷に打たれて死んだ男Aと、沼の泥から生まれた物体B。外見から記憶までAと全く同じであるBのアイデンティティーを問う。

囚人のジレンマ

麻薬取引をしていた2人は銃刀法違反の別件逮捕により拘置される。そこに検察は司法取引を持ちかける。「もし、どちらも黙秘を続ければ銃刀法違反のみで2年の懲役となる。しかしもしどちらか一方が自白すれば自白した方は司法取引により刑は免れるがもう片方は懲役10年である。どちらも自白した場合は懲役7年となる」という内容であり2人共に同様の話がなされている。しかしながら2人は相談することが出来ない。果たしてどちらを選ぶべきか? というものである。この場合冷静に考えるとお互いが黙秘を続ければ2年の懲役で済む。如かしながら一方がこう考えたとしよう。

「相方が自白したとすると自分が黙秘をすれば懲役10年である。しかし自白すれば懲役7年で済む。一方相方が黙秘したとすると自分が黙秘をすれば懲役2年であるが自白すれば刑は免れる。よってどちらにせよ自白した方が得だ」

お互いにそう考えたとするとお互い自白を選び仲良く懲役7年となるだろう。この場合お互いが黙秘をすれば懲役2年であるから黙秘をした方が得である。このように実際の損得と論理が一致しないというパラドクスである。またこれはゲーム理論としてもよく用いられる。

アキレスと亀

亀とアキレスが競走を行うがアキレスは100m後ろからスタートする。アキレスは1秒間に10m、亀は1秒間に1m進む。するとアキレスが100m進んだ時に亀は10m先を進んでいることになる。そしてまたアキレスが10m進んだ時には亀は更に1m先を進んでいることになる。更にアキレスが1m進んでも亀は10cm先にいる……。これを繰り返すとアキレスは亀に一生追い着けない、というものである。実際には何のことは無くおよそ11.11秒後にはアキレスは亀を抜かすことになる。これは説明の仕方によりパラドクスが生じている例である。

抜き打ちテストのパラドックス

ある時先生が抜き打ちテスト、即ちいつやるか分からないテストを来週の月曜から金曜のいずれかにやることを予告した。それに対してある生徒が「木曜の夜までテストが行われなければ金曜日にやることが分かる、よって金曜日にはテストは無い。すると木曜日がテストが可能な最終日である。しかし木曜日までにテストが行われていなければ木曜日にやることが分かる。よって木曜日にテストは無い。これを繰り返すと月曜日までテストは出来ず抜き打ちテストは出来ない」と主張した。これは一見すると正しいように見えるが実際には異なる例である。死刑囚のパラドックスとも言われる。

この話のポイントは複数ある。

一つ目は「いつやるか分からない」の厳密な定義。これの解釈次第では何も矛盾は生じない。

二つ目は「○曜日にテストはできない」と生徒が予測した時点で、その日に抜き打ちテストをすることが可能になってしまうということ。

三つ目は、未来の出来事を前提として論理を組み立てていること。月曜日にテストができるかどうかを判断するのに「金曜日にテストはできない」という事象を前提とすることはできない。

四つ目は、木曜の夜になった時点で先生の発言に矛盾が生じてしまうこと。金曜日にテストをやってもやらなくても矛盾してしまう。

モンティ・ホール問題

3つの箱がある。その中の1つには賞金が入っているが2つはハズレである。今、あなたはその箱の中から一つを選ぶ事になりAの箱を選んだ。すると司会者(司会者はどの箱が当たりかを知っている)がCの箱を開けてCの箱はハズレであることを示した。今、あなたは箱を変えることが出来る。Bの箱に変えるべきか変えないべきか?

これはアメリカで実際にモンティ・ホールが司会を務めた番組で似たようなルールのゲームがあったことに由来する。多くの人がどちらにせよAかBの箱なのだから五分五分だから変えても変えなくても一緒と思い多くの数学者もそう誤解したようである。実際にはこのケースの場合Bの箱が当たりの確率が2/3となり変えた方が得になるのである。

例えば最初にAを選んだ場合

  • Aが当たりの場合、司会者はBかCをランダムに選んで空ける。変えないほうがよい。
  • Bが当たりの場合、司会者は必ずCを空ける。変えたほうがよい。
  • Cが当たりの場合、司会者は必ずBを空ける。変えたほうがよい。

となる。最初に選んだ箱によって司会者の行動が変わるのがポイントとなる。

また3つという条件が勘違いを誘発しやすいという意見もある。仮に最初の条件が10個の箱だった場合に上記の司会者の行動を適用すれば「自分が選んだ箱以外から8個の外れ箱を取り除いた後、残った一個と自分が選んだ一個の二択を迫ってくる」となる。答えを知っている司会者が最後の残した1個と自分が10個の中から選んだ一個、一見二分の一に見えるが……。

砂山のパラドックス

今ここに10000粒の砂で作られた砂山がある。この砂山から1粒の砂を取り除くと9999粒の砂となるが確かに砂山である。同様に9998粒にしても砂山と言える。ではそれを繰り返して最後の1粒の砂となった時、これは砂山と言えるかどうか?

これは数学的帰納法を利用したパラドクスであり似たようなものにハゲのパラドックスというのもある。こちらは「髪の毛が1本の人はハゲである。髪の毛が2本になったとしてもハゲであるといえる。ならば髪の毛が増えてX本になったとしてもハゲである」というものがある。このパラドクスは数学的帰納法の誤用によって生じる。例えば砂山にせよハゲにせよ定義が曖昧である。そのため、例えば5000粒以上の砂が積んでいれば砂山だが4999粒以下では砂山で無い、と定義したとすればパラドクスは生じない。ただし一個差程度で砂山が砂山でなくなるとは考えにくく、哲学的にはあまりこちらは公認されておらず、他の考え方として、砂の集積物が砂山と呼ぶことを否定したり、砂山から砂粒を1つ取り除いたとき、必ずしも砂山のままではないと主張したり、一粒の砂であっても砂山と呼べる…などと定義することでパラドックスを回避する。

πのパラドックス

無限乱数列(0~9の数字が不作為で並んでいる数列)であるπの中のとある部分を切り取ればどのような自然数であっても含まれている、というものである。これはπに限らない。実際に調べることは不可能に近いがこれは無限のパラドックスとして実際に正しいとされている。

殺人ジョークのパラドックス

BBCのコメディ番組モンティ・パイソンのスケッチ(コント)の一つ。

「読めば必ず笑い死にする世界一面白いジョーク」を、他人に披露する事は出来るか。

作中これを書いた作家とその妻はジョークを読んで死亡。ジョークは100ヤード先から読んでも笑い死にする大変強力な殺傷能力を保有していたため、当時ナチスドイツと戦争状態にあった英国軍はこれをドイツ語に翻訳して兵器として利用する事を思いついた。(読めば死ぬため、一人で全文翻訳する事が出来ない。よって翻訳家は一人に付き一単語ずつ翻訳する事になった。)翻訳されたジョークはドイツ語を理解していない兵士にのみ配給され、お堅いSS将校サンすら笑い死にさせるほどの猛威をふるったが、終戦後は英国軍に恐れられ丁寧に埋葬された。

結局、ジョークの何が面白かったのかは誰も知らない。

「見れば必ず死ぬ画像」とか「聴けば必ず死ぬ音楽」の類いのパラドックスの始祖とされる。

関連記事

編集者:DFGNEXT
編集内容:少し追記。