概要
エンジンの一種。
一般的にはガスタービンエンジンの一種としてのジェットエンジン、その中でも特に「ターボファンエンジン」或いは「ターボジェットエンジン」を指すことが多いが、タービンを用いないパルスジェットエンジンやラムジェットエンジンも広義のジェットエンジンに含めることがある。
重量の割に高出力な点や、構造が単純で信頼性が高いなどで現代の航空機のエンジンの花形となっている。
ものすごく大雑把なジェットエンジンの理屈
ターボジェットエンジンの動作をものすごく乱暴に解説する。
- 前方から空気をものすごい勢いで吸い込む。この時前方にファンをくっつけてやると「ターボファンエンジン」(フロントファン式)になる。
- 吸い込んだ空気を回転式の圧縮機で圧縮する。
- 圧縮した空気に燃料を吹き込んで点火し、高温高圧の燃焼ガスを発生させる。
- 高温高圧の燃焼ガスのエネルギーを、タービンで少し拾って2の圧縮機の動力源にする。この時圧縮機だけでなく、外部で何か仕事をさせるための動力も拾ってやるとターボシャフトエンジン(いわゆるガスタービンエンジン)やターボプロップエンジンになる。
- 燃焼ガスを後方にものすごい勢いで噴射。反作用で機体が動く。
ジェットエンジンの特徴
利点
- 構造が単純
ジェットエンジンの構造なんぞ、「扇風機で灯油を燃やしている(序に言えばその燃焼のエネルギーで扇風機を回す)だけ」と表現されるくらいに単純である。
中にあるのは風車のお化けが何段にも連なったものと言っちゃってもいい。
さらにパルスジェットエンジンや、「ダクトエンジン」などとも表現されるラムジェットエンジンに至っては正真正銘ただの管である。
構造が単純だということは、壊れる部分が少なくて信頼性が高いということである。機械の行き着く先はシンプル・イズ・ザ・ベスト。
- とにかく大出力
ジェットエンジンの基本は「燃料と空気をガンガンぶち込んで大出力を得る」だし、先述の簡単な構造とも相まって重量あたりの出力はレシプロエンジン等の比ではない。
このため「軽くて高出力」が要求される航空業界では、レシプロエンジンをあっさりと置き換えてしまった。
特にヘリコプターの場合は、ジェットエンジン(ターボシャフトエンジン)無しでは進化は語れない状態である。
- 雑食性
極論すれば、ジェットエンジンの燃料は「燃える流体」ならなんでもいい。(但し航空用は除く)
ジェット燃料としてメジャーなケロシン(精製された灯油と思えばいい)以外にも、ガソリン、軽油、アルコール、メタンガス、プロパンガス・・・とおよそなんでも使える。(Y2Kがいい例である)。
欠点
- 音がやかましい
ジェットエンジンは確かに高出力だが、それと引き換えというかなんというかとにかく騒音がでかい。
- 燃費が極悪
燃料をあまり選ばない代わりに、凄まじい大食漢である。
- (航空用の場合)意外と燃料を選ぶ
先ほど「雑食性」とは書いたが、航空用の場合はそうは行かない。
「僅かなトラブルが最悪の事態に発展する」の最たるものと言える航空機の世界に於いては、燃料は「低温でも凍らない」「エンジンや配管を侵さない」「酸化して異物を生じさせて配管を塞がない」等の厳しい条件が要求される。
- 設計・製造・整備に特殊な技術を要求される
ジェットエンジンの構造は確かにシンプルであるが、その代わり「高温高圧の燃焼ガスのエネルギーでタービンという精密機器を高速回転させる」という極限状況にあるエンジンであるため、設計や製造、整備には特殊な技術が要求される。
ジェットエンジンの種類
パルスジェットエンジン
最も原始的なジェットエンジンの一つ。
「管の途中にガスの圧力で閉まる逆止め弁と燃焼室付けただけ」という非常に単純な構造をしている。(管の形を工夫すれば逆止め弁すらなくすことが可能)
動力用としてはナチスドイツのV1ミサイルに搭載されたものが有名である。
構造は単純で生産性・信頼性は高いが、空気を圧縮しない言わば「自然吸気」のためとても若干(動力用としてみた場合の)効率が悪く、今では殆ど使われていない。
しかし、動力用ではなく燃焼器・つまり「熱源」として見た場合は非常に効率が高く、パルスジェットエンジンの構造が瞬間湯沸かし器やフライヤーに応用されることもある。
主なエンジン
モータージェットエンジン
パルスジェットエンジンの効率の悪さを改善するため、吸気部に外部動力で稼働する圧縮機を追加して圧縮空気を送り込むようにしたもの。
構造はターボジェットエンジンなどと比較して単純であるが、圧縮機駆動用に別の動力を必要とする(=エネルギー効率が悪化する、重量も増える)ため初期の試作機に用いられる程度で終わった。
ターボジェットエンジン
燃焼ガスのエネルギーをタービンで回収して稼働する圧縮機を用いて空気を圧縮し、高温高圧の燃焼ガスを生成するタイプのジェットエンジン。
「自然吸気」で好率が悪かったパルスジェットエンジンや、圧縮機を別動力で動作させていたモータージェットエンジンと違って、言わば自給自足で圧縮空気を作ることができるようになったため、効率は飛躍的に改善した。
要するに、ジェットエンジンが遂に航空機の動力源として一人前になったのである。
(パルスジェットやモータージェットと比べて)効率は改善されたものの、今度は「排気ガスの速度が速すぎて効率が悪い」という新たな弱点が生まれた。
実は、排気ガスの速度は飛行機の飛ぶ速度と同じくらい~少し速いくらいがもっとも効率がよく、あまり排気ガスの速度が速すぎると却って効率が悪化するのである。さらに騒音も非常に大きく、現代では航空機に使用されることは少なくなってきている。
主なエンジン
- ユンカース ユモ004(Me262など)
- ゼネラル・エレクトリック J79(F-4、F-104など)
- ゼネラル・エレクトリック J85(F-5など)
- プラット・アンド・ホイットニー JT3C(ボーイング707、DC-8、B-52など)
- ロールス・ロイス エイヴォン(ドラケン、シーヴィクセンなど)
- ロールス・ロイス オリンパス(ヴィクター、アブロ バルカン、コンコルドなど)
- 海軍航空技術廠 ネ20(橘花)
ターボプロップエンジン
先述の通りターボジェットは排気の速度が速すぎて、「低速でもいいけどその代わりパワーが要求される」旅客機や輸送機には不向きである。
そこで、排気の反作用を動力とするのではなく排気のエネルギーを使ってプロペラを回すようにしたエンジンである。
タービンを使って排気のエネルギーを回収し、減速用歯車で適当な速度まで減速した上でプロペラを稼働させる。
低速での効率はターボジェットと比較して大幅に改善されたが、プロペラそのものの限界として700km/hまでが実用的な速度域とされている。
まあどこかのクマーみたいな外道も居るけど(ターボプロップエンジンのくせに920km/hもの最高速度を誇る)。
どこかの熊「呼んだかね?」
主なエンジン
- ロールス・ロイス ダート(YS-11、バイカウントなど)
- アリソン T56(C-130、P-3、L-188など)
- プラット・アンド・ホイットニー PT100(DHC-6、DHC-8など)
- クズネツォフ NK-MV12(Tu-95、Tu-114など)
プロップファン(アドバンスド・ターボプロップエンジン)
ターボプロップエンジンの高速性能を改善するために研究開発されたエンジン。
名称は「ターボプロップエンジン」とあるが、分類的には外部ダクトのないターボファンエンジンとして扱われる(このため『超高バイパス比ターボファンエンジン』と呼ばれることもある。
後退角の付いた大量のブレードのあるプロペラを、タービンの軸に直結させて高速回転させることにより推進力を発生させる。
ターボファンエンジンの高速性とターボプロップエンジンの燃費性能を両立させることができるエンジンではあったが、騒音が非常に大きく実用化された例はAn-70「カブ」程度である。
しかし原油価格の高騰により、研究開発が再開されたらしい。
ターボシャフトエンジン
俗に「ガスタービンエンジン」と言われるのは、要するにこいつである。
基本的な理屈はターボプロップエンジンと同じく「排気のエネルギーをタービンで回収して何かを動かすエンジン」であるが、ターボプロップエンジンと違って排気のエネルギーは殆ど推進力とならない(要するに殆ど、出力軸を回転させるためのエネルギーに変えているのである)。
現代のヘリコプターに無くてはならないエンジンである。
また、「それが可能だからです」の一言でターボシャフトエンジンを動力源に採用しちゃったトンデモバイクもある。
それが可能だからです。
主なエンジン
- アリソン 250(OH-6、アイランダー、MTT・タービン・スーパーバイクなど)
ターボファンエンジン
ターボジェットエンジンの燃費・騒音の改善を行いながら高速性を維持するために開発されたエンジン。
前方にタービンで駆動される巨大なファンを追加し、ファンが起こす気流で推進力を得るエンジンである。
現代の航空用の主流となっているエンジンである。
バイパス比(ファンが直接吐き出す気流と、コアエンジン(動力部)に送り込む気流の量の比率)が2:1以下のものを低バイパス比ターボファンエンジン、それ以上のものを高バイパス比ターボファンエンジンと呼ぶ。
音速を超えない航空機には、もっぱら高バイパス比ターボファンエンジンが用いられる。近年の旅客機用ターボファンエンジンは燃費の改善と騒音の低減の要求から高バイパス化の傾向が著しく、推進力のほとんど(7〜8割)をファンで発生させるようになり、「ターボプロップ機(プロペラ機)への回帰」といわれることもある。
推力は大きいが、高バイパス比になると排気ガスの速度は低下し超音速域には不向きとなるため、超高速飛行が要求される戦闘機用の場合は特性がターボジェットエンジンに近い低バイパス比エンジンを用いる。
主なエンジン
低バイパス比ターボファンエンジン
- ロールス・ロイス コンウェイ(VC-10など)
- ロールス・ロイス スペイ(ブリティッシュファントム、ホーカー・シドレートライデントなど)
- ロールス・ロイス/チュルボメカ アドーア(F-1など)
- プラット・アンド・ホイットニー JT3D(ボーイング707、DC-8、B-52など)
- プラット・アンド・ホイットニー JT8D(ボーイング727、ボーイング737(初期モデル)、DC-9、川崎C-1など)
- プラット・アンド・ホイットニー F100(F-15など)
- ゼネラル・エレクトリック F101(B-1など)
- ゼネラル・エレクトリック F110(F-16、F-2など)
高バイパス比ターボファンエンジン
- ロールス・ロイス RB.211(ボーイング747、ボーイング767、DC-10、トライスターなど)
- プラット・アンド・ホイットニー JT9D(ボーイング747、ボーイング767、DC-10、トライスターなど)
- プラット・アンド・ホイットニー PW2000(ボーイング757など)
- ゼネラル・エレクトリック CF6(ボーイング747、ボーイング767、エアバスA300、川崎C-2など)
- ゼネラル・エレクトリック CF34(A-10、S-3、エンブラエルE-Jetなど)
- ゼネラル・エレクトリック GE90ボーイング777)
- CFMインターナショナル CFM56(ボーイング737、エアバスA320、エアバスA340など)
- IAE V2500(エアバスA320、MD-90など)
- IHI F7(P-1)
ギヤードターボファンエンジン(GTF)
ターボファンエンジンの一種。燃費をさらに改善するために開発された。
ターボファンエンジンの燃費を改善するための手段の一つに、バイパス比を高く取る(ファンで発生させる推進力の割合を高くする、或いはコアエンジン(ターボジェットエンジンの部分)に送り込む空気の量を減らす)という方法がある。
そのためにはファンの直径を大きくするのが手っ取り早い方法の一つである。
だが、ここで問題がある。ファンの直径を大きくすると、同じ回転数でもファンの先端の速度が大きくなり、場合によっては音速を超えてしまう。音速に達する、或いは音速を超えると造波抗力の影響で却って効率が悪化する(要するにファン先端から衝撃波が発生し、効率が悪化してしまう)。
つまり、ファンはCPUクーラーのように「大口径にして、ゆっくりと回転させる」と効率が良くなる。
だが、そのまま回転数を下げるということは(特に単軸式エンジンの場合)、ファンだけでなくコアエンジンの回転数までも下げてしまうということである。
回転数を下げると今度はコアエンジンの、特にコンプレッサーの効率が低下してしまう。コンプレッサーはファンとは逆に小型のものをガンガン回転させた方がいい。
大口径で低速回転のファンと、小径で高速回転のコアエンジン(の、特にコンプレッサー)。これを同居させるにはどうしたらいいだろうか。
その回答の一つがギヤードターボファンエンジンである。
何の事はない、回転数が違うなら減速機(歯車)を使って回転数を変えてしまえばいいだけである。
というわけで、ファンの部分に減速機(遊星歯車減速機が主に使われる)を仕込み、ファンだけを低速で回転させられるようにしたターボファンエンジンである。
バイパス比が極端に大きく(バイパス比10以上、つまりジェット排気の10倍以上の推力をファンが発生させる)、見方によっては「ガスタービン駆動のダクテッドファン」と言うこともできるかもしれない。
現在実用化されている機体ではリージョナルジェットBAe146(ハネウェルALF502)やボンバルディアチャレンジャー(同)などが採用しているほか、三菱航空機の小型旅客機MRJ(プラット・アンド・ホイットニーPW1000G)が採用を予定している。
ただし途中にファン駆動用の減速用歯車を仕込んでいるという特徴から、現段階ではあまりにも高出力のものを製造することは難しい。
主なエンジン
※アップデートプログラム「A320neo」にて更新可能
コア分離型超高バイパス比ターボファンエンジン
コアエンジンで生成した高圧空気を使って分離したファンを駆動し、離着陸や推進に使用するタイプのエンジン。
ジェットエンジンとガスタービンエンジンを合わせたような性格を持つエンジンである。
現在JAXAがVTOL機用のリフトエンジンとして開発を進めている。
ただしこの発想自体は今になって生まれたものではなく、デファイアントでお馴染みのイギリスの航空機メーカー、ボールトンポールが(アイデアだけなら)先に発想している。
よーするに、「発想としてはまったくもって間違っちゃあいないけど当時の技術的限界で出来なかった、しかし技術が進んでもうすぐ実用化できそうなところに来ている」とも言える。
発想そのものは間違ってはいないものの、周辺技術が追い付いていないために「変態」や「失敗」呼ばわりされてしまうのもイギリスではよくあることである。
ラムジェットエンジン
空気吸入部の形状を工夫して、吸入するだけで空気が圧縮される構造としたエンジン。
基本構造はタービンすら無い単なる管なので「ダクトエンジン」と呼ばれることもある。
タービンすら無いのでターボジェットエンジンよりもさらに高速域を狙えるが、反面かなり速度が出ていないと起動することすらできない(マッハ0.5以上でようやく起動できると言われている)ため発進時にはターボジェットやターボファン、あるいはロケットエンジンなどを使用する必要がある。
スクラムジェットエンジン
ラムジェットエンジンの一種。
通常のラムジェットエンジンとの違いは、燃焼室の中でも超音速で空気が流れている(超音速燃焼)という点である。
そもそも空気を減速しないので、ジェットエンジンの上限と言われるマッハ15までを狙うこともできると言われるものの、超音速燃焼を行うために燃料には水素(燃焼速度が非常に速い)を使ったり、点火装置にもプラズマトーチを使うなどの工夫が必要とされる。
インテグラル・ロケット・ラムジェットエンジン
ラムジェットエンジンの一種で、固体燃料ロケットエンジンと一体となっている。
初期はロケットエンジンで加速し、燃焼終了までにラムジェットエンジンが起動可能な速度まで加速する。
その後、固体燃料の入っていたスペースをラムジェットエンジンの燃焼室として使用する。
原子力ジェットエンジン
燃焼熱でなく核反応で発生する熱で取り込んだ空気を膨張させる(高圧ガスを発生させる)エンジン。
勘のいい方なら恐らく気づいただろうが、こいつは外燃機関の部類に属するジェットエンジンである。
そもそもジェットエンジンは高温高圧ガスのエネルギーを利用するエンジンであり、ガスを発生させるための「熱源」は別に燃焼熱でなくてもいいのである。
このため、熱機関としても独立した扱いをされるジャンルのエンジンともなっている。
核反応の熱で気体を膨張させ、高温高圧ガスを生成する・・・。どういうことかもう気づいただろう。
構造によっては原子炉内を通過して放射能を帯びたガスをそのまま吐き出すという結果になる、物騒ってレベルを通り越したジェットエンジンである。
一応、一次冷却材を介して気体に熱を伝える(排気ガスの放射能汚染を低減できる)という手法もあるが、一次冷却系の分だけ重量が増えてしまう。
はっきり言って、少なくとも現実では地球上で実用化してはいけないエンジンである。
しかし、ガンダム世界ではミノフスキー粒子などにより、ヘリウム3を使った「熱核融合炉」が実用化されているため、熱核ジェットエンジンが普遍的に使われる技術となっている。原子力(核分裂エネルギー)と違い放射性物質を生成せず、中性子線も少ない。
特に有名なのはMS-09「ドム」であろう。(脚部に内蔵された強力な熱核ジェットエンジンで浮上し、地表を高速で走行する)